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SYMBOLS 

dm  normalized element distances (rm/L) 

h (ft) vehicle altitude 

L (ft) turbulence characteristic length in x-y plane (Lu and LV) 

Lw (ft) turbulence characteristic length in vertical axis 

m segment number 

Mn,m generalized roll axis torque produced by the vertical velocity at element rm 

[M]m matrix of correlation coefficients for radius rm 

n blade number 

N number of blades 

pm (rad/sec) filter pole at element rm 

RG (ft) distance from the hub to the tail rotor 

rm (ft) mth element’s radius from the hub 

RT (ft) rotor radius 

Sm series summation for average velocity computation at rm 

[T] rotation matrix 

Vm (ft/sec) DOBEST model aerodynamic velocity of all elements at radius rm 

Vn,m (ft/sec) baseline model aerodynamic velocity of element (n,m) 

VRW (ft/sec) vehicle aerodynamic velocity 

m equivalent discrete filter pole at element rm 

n,m
,

n,m
 element angles of attack and sideslip 

i independent, random Gaussian variables, four per axis (12 total) 

μi rotated random variables, six per axis 

i random variables at all aerodynamic centers (22 per axis) 

m correlation coefficients between random variables separated by dm 

n (rad) azimuth angle of the nth blade 

T (rad/sec) main rotor angular velocity 

 (ft/sec) turbulence dispersion in the x-y plane 

w (ft/sec) turbulence dispersion in the vertical axis 

 (rad/sec) temporal frequency 

 (rad/ft) spatial frequency 

 

v 
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SUMMARY 

A turbulence model applicable to a rotorcraft’s 
complete flight envelope has been developed for real-
time simulation. Invariant statistical properties are 
produced in each dimension by use of a novel 
interpolation algorithm for both rotating blade elements 
and fixed aerodynamic centers. The turbulence 
velocities at all locations are therefore statistically 
correlated as functions of relative position and 
turbulence scale lengths. 

Invariant statistical properties are important for the 
specification of a uniform turbulent energy field for 
each axis. Correlation is important for the distribution 
of the field over the rotorcraft’s geometry. The 
distribution of turbulence to aerodynamic centers 
induces moments, and obviates the rotational filters that 
are required in non-distributed aircraft models. The 
algorithm used to distribute turbulence over the rotor 
system includes blade rotation, while avoiding the 
intractable problem presented by cyclostationary filters. 

Unlike previous turbulence models that require 
significant airspeed, low-speed and hovering operations 
are accommodated, where the turbulence scale length 
usually approaches that of the rotor diameter. In this 
case, variations in correlation over the rotor system 
become especially significant in generating the 
vehicle’s rotational response to atmospheric 
disturbances. 

 

INTRODUCTION 

For many years the simulation community has used the 
military specification turbulence filters described in 
reference 1 in applications involving conventional 
aircraft models. For rotorcraft models, however, these 
filters present an unusual challenge. In particular, for 
sophisticated blade-element models such as the Black 
Hawk (UH-60) model of reference 2, the challenge is 
exemplified by the nonlinear behavior of the velocities 
of the individual blade elements. The spectral 

representation of turbulence assumes stationary (or 
“slowly varying”) coefficients, where these coefficients 
are functions of airspeed. From reference 1: “The 
frozen field concept (Taylor’s hypothesis) … implies, in 
the frequency domain, that the temporal frequency  
(rad/sec) sensed by the airplane is related to the spatial 
frequency by the true airspeed V; that is, = V . 
Therefore the spectral densities are transformed to 
functions of  as follows: 

 ( ) =
1
V

=
V

 
 

 
 
.” 

The mathematical destinations of this transformation 
are the coefficients of turbulence filters. These filters 
produce velocity components from Gaussian inputs. 
The purpose of the filters is twofold. They produce an 
integrated power spectral density that is given by the 
variance 2 , and for the Dryden turbulence model, they 
shape the spectral form by imposing a first-order high-
frequency  asymptote. Translational turbulence filters 
are typically represented in Laplace notation: 

 f s( ) =
3p s + p 3( )

s + p( )2
 

The quantity p = V L  is referred to herein as the “pole”; 
L is the characteristic scale length of turbulence in a 
particular dimension, the inverse of which is sometimes 
referred to as the “wave number.” Applying this filter 
to an element on a blade, the notation V = Vn,m  is used, 
where n is the blade number and m is the element 
number.  

The cyclic behavior of element velocities in a rotor 
system presents an intractable problem to the discipline 
of simulation, unless a new approach is taken to 
turbulence simulation. A turbulence model is here 
derived called DOBEST (an acronym for the title of 
this paper), and this model is shown to create realistic 
turbulence velocities by applying mathematical 
algorithms amenable to real-time simulation. The effect 
of these algorithms is compared with a baseline model, 
which is determined to be inappropriate for simulation. 
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This baseline model uses a thorough description of the 
aerodynamic velocity at each blade-element location. 

In the DOBEST model, average velocities are 
developed, as shown in appendix A. The filter 
coefficients for any radial station (on a “ring”) are then 
stationary for a given vehicle airspeed and altitude, 
eliminating the cyclostationary problem of the baseline 
model. 

Body-axis disturbances utilize the vehicle’s 
aerodynamic velocity V = VRW , and their filters are 
applied at the distributed aerodynamic centers of the 
vehicle. Hence, these components are similar to those 
used in turbulence for conventional aircraft simulations. 

A complete baseline model, as well as the DOBEST 
model, is developed here. Although the baseline model 
contains an accurate representation of rotary dynamics, 
it produces divergent responses and meaningless energy 
metrics because of its cyclostationary filter coefficients. 
The DOBEST model does not have these problems. 

Rotational turbulence filters are also used in turbulence 
models for conventional aircraft. However, in a 
distributed aircraft model, rotational responses are 
induced from position-dependent forces created by 
function evaluations using distributed aerodynamic 
velocities, including superimposed turbulence. Filters 
approximating rotational vehicle responses to 
turbulence are thus superfluous in a distributed model. 

 

THE THEORY 

Considering just a rotor system, turbulence filters 
model atmospheric disturbances, and these disturbances 
are superimposed upon the more profoundly developed 
physics of the rotating blades. In particular, airspeed 
differences on the advancing and retreating blades are 
accounted for in a blade-element rotor model such as 
that of reference 2. Since the filters are only spectral 
representations of turbulence, they do not have to be 
formulated as complete aerodynamic representations of 
blade activity, especially when such a formulation 
requires assumptions that invalidate the fundamental 
characteristic of the filters: outputs from linear filters 
excited by Gaussian noise remain Gaussian. This is not 
true when the filter coefficients are periodic functions 
of time. Such filters are “cyclostationary,” and are 
nonlinear functions of time. The effect of 
cyclostationary filters is illustrated herein by use of a 
baseline model, where it is shown that it is not possible 
to establish meaningful energy metrics for the turbulent 
field. 

Consider the velocity of a blade-element located at a 
fixed radius rm  from the hub, where the blades rotate 
with an angular velocity given by T . The azimuth 
angle of a blade is given by 

n = T dt + 2
n 1

N
 

 
 

 

 
  

This angle is measured from the aft centerline of the 
vehicle, and N is the number of blades. Nominally, the 
rotor’s rpm is given by 

T
= 27 rad / sec =  4.3 Hz  for 

the Black Hawk model discussed herein, so that an 
element (n,m) velocity nominally has the frequency of 
4.3 Hz. 

 As shown in appendix A, by including both the aircraft 
and rotational velocity components with respect to the 
mean wind, the aerodynamic velocity for an element 
located at rm  on the nth  blade is given by 

V
n,m
= V

RW

2
+

T

2
r
m

2
+ 2

T
r
m
V
RW
cos sin

n
+( )  

This cyclic velocity, which may periodically vanish for 
an element whenever Trm VRW , is the component that 
produces cyclostationary filters, despite the fact that the 
rotational component Trm  is quite large at all element 
stations. The element velocity Vn,m , with its two 
subscripts representing blade number “n” and element 
number “m,” is that used in the baseline model. 

The total element velocities, including flapping and 
lagging, are used in the rotor model to produce the 
angles of sideslip “ n,m ” and attack “ n ,m ” of the 
individual blade elements. Extensive mathematical 
operations, including multivariate function evaluations, 
accommodate nonlinear phenomena such as reverse 
flow on retreating blades (ref. 2). Considering the 
assumed linear form for turbulence filters, however, it 
is inconsistent to compute these gross, nonlinear 
velocities in the rotor system, and to then add 
incremental turbulence values that are themselves 
functions of the total nonlinear velocities. The filters 
assume stationary (or “slowly varying”) coefficients, 
and are only applicable for appreciable, positive 
velocities. 

“The implication of [Taylor’s] hypothesis is that the 
turbulence-induced responses of the airplane result 
only from the motion of the airplane relative to the 
turbulent field. Experience has shown that the frozen 
field concept is entirely acceptable for those cases in 
which the mean wind velocity and the root-mean-
square turbulence velocity are small relative to the 
ground speed of the airplane.” (ref. 1). 
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Hence, only appreciable velocities are accommodated 
by filters using Taylor’s hypothesis, and regions around 
reverse flow on a blade are certainly precluded. 

A design objective of the DOBEST model is to retain 
the military specification linear filters of reference 1, 
which deliver the required variance and first-order roll-
off. Considering the above quote, the frozen-field 
concept becomes more valid by including the large 
rotational contributions in the velocity of each element. 
Indeed, the velocity then becomes so large that a 
discrete implementation of the filters indicates that an 
upper limit be imposed on the system pole ( p = V L ) 
for computational accuracy. This phenomenon is 
related to the Nyquist criterion. Using realistic cycle 
times, accuracy could degrade at high flight speeds 
during low altitude flight, unless the turbulence scale 
length in the vertical dimension is restricted to a 
minimum value. 

The DOBEST model is a new approach to simulating 
rotorcraft turbulence. A novel technique is used to 
distribute Gaussian noise to the geometrical locations 
of aerodynamic centers, including five elements located 
on each of four blades. These properly correlated values 
are then input to linear filters. The filter outputs retain 
the Gaussian characteristics of the inputs, and properly 
produce statistical correlation as a function of blade 
translation and rotation through a turbulent field. The 
DOBEST model is also designed to be very accurate 
when the magnitude of the scale length approaches that 
of the rotor diameter. This occurs for low-altitude 
flight. 

The nonlinear rotor model (ref. 2) includes all of the 
cyclic dynamics, so the redundant inclusion of these 
dynamics in the creation of the incremental turbulence 
terms is not used in the DOBEST model. The baseline 
model, however, includes these cyclic dynamics and 
produces outputs that diverge. This phenomenon is 
shown in appendix B. 

Magnitude arguments exist for not including 
cyclostationary phenomena in the turbulence 
contributions to a rotorcraft model. If the airspeed is 
large, turbulence increments to the rotor system 
represent minor contributions to the gross cyclic 
velocities, and vast computational power need not be 
dedicated to improving the accuracy of superimposed 
stochastic variables, which are highly correlated. If the 
vehicle’s airspeed is small, the increments are 
computed quite accurately without the inclusion of 
cyclostationary dynamics (as in the DOBEST model), 
and their contribution to rotorcraft responses becomes 
more important. This occurs because the correlation 
between the individual elements is then small, owing to 

small values of characteristic length (L). Low 
correlation can produce large rotational activity. 

For the rotor’s turbulence filters the DOBEST model 
uses the average element velocities, as developed in 
appendix A. There is considerable precedence for this 
operation in the field of turbulence modeling: 

“… special consideration should be given to the 
anisotropic and nonhomogeneous nature of the 
turbulence. One way to sidestep this difficulty is to use 
average values of the turbulence model parameters…” 
(ref. 1). 

Aerodynamic effects owing to velocity differences on 
advancing and retreating blades are otherwise handled 
in the blade-element model, and only stochastic 
disturbances are considered (not “discrete gusts”). The 
rotor’s filter coefficients thus remain stationary (i.e., 
“slowly varying”), because the turbulence filters for all 
elements at a given radius from the hub utilize an 
average aerodynamic velocity (single subscript) given 
by 

Vm = 1 Sm( ) VRW
2
+ T

2 rm
2
+ 2 T rmVRW cos  

where Sm  is a series developed in appendix A. This 

formulation invariably produces large velocities 
(Vm >212 ft/sec) in the rotor model’s turbulence filter 
coefficients, independent of the direction of the mean 
wind. It also decreases the computational workload 
considerably, which nonetheless remains large, and 
avoids the cyclostationary dynamics that invalidate 
Gaussian assumptions. This invalidation for the 
baseline model is illustrated in appendix B. 

For body-fixed aerodynamic centers, the conventional 
implementation of turbulence is used. These filters 
utilize the true airspeed (VRW ) of the vehicle, while 
inputs are distributed to aerodynamic centers. 

Great care is taken here to preserve the Gaussian 
characteristics of stochastic turbulence, and thus retain 
realistic metrics for the energy in the turbulent field. A 
novel interpolation algorithm is introduced that retains 
the turbulence variance in each axis of the rotorcraft, 
while producing the proper covariances between 
aerodynamic centers. If required, nonlinear variations 
in the energy field, such as patchy turbulence, may be 
included in the dispersion coefficients. 

The linear filter representation degrades for small 
aerodynamic velocities, because the filter’s pole, zero, 
and gain vanish. This results in low-gain integration, 
and is shown to cause havoc in the baseline model. 
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Nonetheless, turbulence occurs in real flight despite 
low vehicle velocity with respect to the mean wind, and 
is a very important phenomenon in modeling rotorcraft 
operations at low altitudes. Use of the average velocity 
at each element station avoids this problem in the 
DOBEST model. 

Especially for the vertical scale length L  (as cited 
later), near sea level the turbulence wavelength 
approaches that of a typical rotor diameter, and in 
generating rotational disturbances the accompanying 
reduction in cross correlation is shown to be very 
important. Conversely, for high-altitude flight, where 
vehicle velocity is usually large, the characteristic scale 
length of turbulence is also large, such that the filter’s 
pole (V L ) remains reasonable. A large turbulence 
scale length (or altitude) is shown to produce a high 
degree of correlation throughout the rotor system. 

The theory may be summarized as follows: The proper 
distribution of Gaussian random variables throughout 
the rotor system is the dominating consideration in 
creating a representative simulation of rotorcraft 
turbulence. Turbulence filters merely shape the spectral 
form so that the required dispersions are delivered, 
while imposing a second-order high-frequency 
asymptote (for the Dryden spectral form of ref. 1). For 
a blade element rotor system, the implementation of the 
military specification filters produces an intractable 
modeling problem, because the filter’s poles are 
cyclostationary. This is caused by the pole’s direct 
proportionality with aerodynamic velocity. The 
problem is exemplified in the baseline model, which is 
used for comparison purposes. The DOBEST model, 
however, extracts the average poles for filter 
representations at each element location, and by use of 
a novel distribution algorithm, creates a very accurate 
field of filter inputs. For the rotor system, these inputs 
rotate with the blades and display the proper correlation 
at all aerodynamic centers in the rotorcraft model. The 
utilized filter coefficients adequately represent spectral 
variations owing to vehicle velocity and altitude 
variations, and do not distort the Gaussian 
characteristics of the input turbulent field. 

 

THE GEOMETRY 

Sikorsky’s Black Hawk (ref. 2) model (GENHEL) is 
used as an example of a sophisticated rotorcraft model 
with aerodynamic representations at distributed 
locations, including elemental stations along each 
blade. Looking down on the rotorcraft, a circle of 

diameter L is defined that includes the entire main rotor 
area and the tail rotor. 

The techniques derived here may be extended to a 
volume of space about the vehicle, but this is not 
required. “Because of the small vertical dimension of 
the airplane relative to the length and span, it is 
reasonable to ignore variations of the turbulence over 
the vertical dimension of the airplane” (ref.1). The 
main rotor used here for illustration purposes is based 
on blade-element theory, and the tail rotor model is 
based on Bailey theory. 

A coordinate system is created with respect to the 
rotorcraft x-y plane, which is different from the 
previously used coordinate system in the SORBET 
model of reference 3. In contrast to SORBET, the 
DOBEST model’s coordinate system is independent of 
the wind axis. It does not use temporal buffers for 
velocity histories, because Taylor’s hypothesis states 
that time variations in stochastic turbulence are 
statistically equivalent to distance variations in 
traversing a field of turbulence (ref. 1). The SORBET 
model, however, accommodates discrete gusts. Discrete 
gusts must be otherwise handled in the DOBEST 
model, and their application to the vehicle’s 
aerodynamics does not involve the turbulence filters. 

For certain kinds of experiments, there is interest in 
simulating rotorcraft responses corresponding to gusts 
over ship or terrain features; this is accomplished using 
an intermediate data-preparation step involving 
computational fluid dynamics (CFD). These 
simulations are intended to correlate the gust and 
turbulent field to the terrain as perceived by the pilot. 
The DOBEST model, however, only produces 
stochastic turbulence velocities. Energy-related 
parameters such as turbulence variances and dissipation 
rate (from a CFD analysis) would be required in order 
for DOBEST to augment a terrain-correlated 
application. 

It is suggested that a model for responses to discrete 
gusts, as required in a terrain-correlated program,  may 
use a nonrotating four-point application concept similar 
to that discussed here. For gust models, this requires a 
relatively small computational workload in the 
transmittal of the data necessary to compute accurate 
aircraft gust responses. For example, wind vectors at 
four points about the vehicle, in addition to turbulence 
intensities applicable for the entire rotorcraft (usually 
given by the dispersions i ), are sufficient to compute 
aircraft gust and turbulence responses for a distributed 
model. This statement assumes that the standard 
military specification atmospheric model is used for the 
turbulence scale lengths. In terrain-correlated 
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applications the turbulence wave number =1 L  may 
alternatively be used. This quantity is related to the 
turbulence dissipation rate in “k ” models, as 
discussed in reference 4. In this case the filter pole 
becomes p = V , where the components of  are 
also applicable for the entire rotorcraft. 

The four-point concept may benefit gust models such as 
that of reference 4, where the data-acquisition points 
should be distributed symmetrically about the rotorcraft 
at a radius equal to the square root of two times the 
outboard element radius r5  (in order to define a box 
around a rotor system that includes all element radii 
plus the tail rotor). By orienting the acquisition points 
along the vehicle horizontal axes, the position of the tail 
rotor is interior to the delineated area. The implied 
interpolation scheme, that is using simple geometrical 
relationships to the aerodynamic centers of a distributed 
model, is superior to the transmittal of atmospheric 
gradient data, because the aircraft’s geometry is then 
considered, and linearity between data points is not 
assumed. “Also, it should be mentioned here that the 
aerodynamic effects of gust gradients are not quite the 
same as the effects of the airplane angular velocities” 
(ref. 1). This is an important consideration in evaluating 
the performance of different vehicles in similar gust 
and turbulence environments. 

For simplification in this derivation, the tail rotor is 
assumed to be coincident with the empennage and 
horizontal tail; also the main rotor hub is assumed to be 
coincident with the vehicle center-of-mass. These 
assumptions do not appear to be significant for the 
distribution of stochastic turbulence in the Black Hawk 
model. The techniques may be extended for models 
with different geometry, such as a rotorcraft with two 
main rotors, and with minimal computational workload, 
additional aerodynamic centers may be included by use 
of the distribution algorithm. 

0 L
0

L

L/2

RG

RT
L/2

L/2

 

Figure 1. Introductory geometry. 

In figure 1 a circle of diameter L is defined, where L is 
the symmetric characteristic scale length of turbulence 
in the vehicle x-y plane, which is a function of altitude. 
The rotor hub is located at the center of the circle, and 
the rotor radius RT  is a fraction of the radius L/2. The 
location of the tail rotor is also within the circle, 
because its distance from the rotor hub is less than L/2 
for minimum L. From a military specification (ref. 5), 
the minimum value of L in the x-y plane is 75.64 ft. 
The distance from the main rotor hub to the tail rotor of 
the Black Hawk model is R

G
= 32 ft . 

The main rotor radius is R
T
= 26.83 ft,  which includes 

the hinge offset e = 1.25 ft  and the spar length 
 e = 2.25 ft.  Using the equal annuli algorithm of 

reference 2, the radius from the main rotor hub to a 
blade station, rm , may be computed from 

rm = e +  e ( )2 +
2m 1

2M
RT
2 e +  e ( )2[ ] e  

where the blades are modeled using 1 m M  
segments; nominally M = 5. 

For five radial stations the equal annuli algorithm 
produces the radial positions (ft) and rotational 
velocities (ft/sec) shown in table 1. 

Table 1. Element positions and rotational velocities. 
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m rm  Trm  

1 7.86 212.25 

2 13.73 370.83 

3 17.88 482.83 

4 21.28 574.54 

5 24.23 654.14 

 

The average element velocities used in the DOBEST 
model are never less than these rotational velocity 
components. A variable rotor rpm is not excluded in 
this model. 

For most flight regimes the scale length L is large 
compared to the rotor diameter. In this case turbulence 
throughout the rotorcraft is highly correlated. However, 
at sea level L approaches the rotor diameter, in a 
proportion similar to that illustrated in figure 1. As is 
discussed, correlation then becomes a very important 
phenomenon. 

THE DISTRIBUTION ALGORITHM 

Four uncorrelated, unity-variance, zero-mean, Gaussian 
random variables ( 1 , 2 , 3 , 4 ) per translational axis are 
assumed available in the following derivation. 
Independent noise sources are not necessarily required 
to create these variables in discrete simulation; 
sequential values from a single source with a long 
period may also be used. For all three axes, these 
variables may be represented by 1 , 2 , 3 , 4( )k , where 
k = 1, 2,3  represents the vehicle’s x-y-z axes. 

Rotations are used to distribute these variables over 
both the rotor system and the vehicle geometry. A 
rotation matrix in the x-y plane is developed by 
weighting the independent variables as functions of 
their angles of rotation: 

μi = a + b cos i + j 1( )
2

 
 

 
 

 
 
 

 
 
 
j

j= 1

4

 

Using the expected value operator E, the Gaussian 
characteristics of the original noise sources (except 
independence) are preserved when 

E μi
2{ } = 4a 2 +2b2 = 1

E μiμi+ 2{ } = 4a 2 2b2 = 0
 

These relationships yield a =1 8  and b =1 2 . 

The rotations are functions of the azimuth angles of the 
individual blades, but may be written as a function of 
the azimuth angle of just one blade, 1 . Where 
S = sin 1  and C = cos 1 , the rotation matrix is 

μ1

μ2

μ3

μ4

μ5

μ6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=
1

8

1 + 2C 1+ 2S 1 2C 1 2S

1 2S 1 + 2C 1+ 2S 1 2C

1 2C 1 2S 1 + 2C 1+ 2S

1+ 2S 1 2C 1 2S 1 + 2C

1 + 2 1 1 2 1

1 2 1 1 + 2 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

 

 

 

 

 

 

 

 

 

 

 

Note that six correlated variables have been created 
from the original four uncorrelated variables (per axis). 
These six variables remain unity-variance, zero-mean, 
Gaussian random variables. 

As illustrated in figure 2, the first four rotated variables 
in the above set are associated with individual blades, 
whereas the latter two rotated variables are associated 
with the vehicle’s longitudinal body axis. The rotated 
variables are in a plane coincident with the vehicle’s 
longitudinal and lateral axes, on a circle of diameter L. 
The application points of the first four variables are 
extensions of the four blades, at a radius L/2 from the 
rotor hub; L has a minimum value of 75.64 ft. 

μ1

μ2

μ3

μ4

1

Blade 1

Blade 2Blade 3

Blade 4

μ6

μ5

 

Figure 2. Random variable locations. 

The latter two longitudinal random variables do not 
rotate with the rotor system, and are used to create 
random variables along the longitudinal body axis. If 
the lateral dimension of the aircraft also has significant 
aerodynamic centers, two lateral variables may easily 
be defined. For example, variables μ7  and μ8  may be 
created for this purpose. They would be similar to μ5  
and μ6 , but rotated 90 degrees. All aerodynamic 
centers represented in a distributed rotorcraft model are 
then accommodated by use of these variables. The 
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body-fixed variables display the proper statistical 
relationships with respect to the rotor system variables. 

For each of the rotated random variables, either along 
the longitudinal axis or distributed on the rotating 
blades, the variance is unity, 

E μi
2{ } =1  

For random variables with the above characteristics the 
correlation coefficient between individual components 
is also the covariance. For opposing-blade and body-
axis random variables the covariances are all zero, 

E μ1μ3{ } = E μ2μ4{ } = E μ5μ6{ } = 0  

However, considering the rotor system, adjacent blades 
are correlated, and their covariances are given by 

E μ1μ2{ } = E μ1μ4{ } = E μ2μ3{ } = E μ3μ4{ } = 1
2

 

From the above relationships, the random variable at 
the hub may be expressed by, 

μ0 =
1

8
μ i

i= 1

4

=
1

2
μ5 + μ6( )= 1

2 i
i=1

4

 

The covariance from the hub to any of the six random 
variables is 

E μ0μ i{ } = 1
2

 

 

CORRELATION 

The distance L is the characteristic length of turbulence 
in the vehicle’s x-y plane, and this length defines the 
distance at which the correlation between points 
vanishes. Hence, for two points separated by a distance 
2rm , the correlation between zero-mean, unity-variance 
variables at these points may be defined by a function 
that is unity when they are coincident, and zero when 
their separation is equal to the characteristic scale 
length. Defining a normalized distance between two 
identical-radius segments on opposing blades, 

dm =
2rm
L

 

an exponential correlation coefficient is defined that 
meets these requirements: 

m = 1 dm( )e dm  

A compatible linear form is also examined. 

These definitions permit the use of a novel interpolation 
algorithm for the creation of random variables at all 
blade-element locations, and the variables have the 
same unity variances and zero means. Turbulence 
filters are then applied at each element location, 
because their inputs are unique. However, considerable 
simplification occurs in the DOBEST model because 
the utilized velocity of all four blades is identical at any 
given radial station. The DOBEST model makes use of 
the fact that Gaussian variables passing through linear 
filters remain Gaussian. This is not true if 
cyclostationary filters are used, as is the case in the 
baseline model. 

The Black Hawk has N = 4  blades, and each element 
on each blade contributes forces (and hence moments) 
to the total rotorcraft model. In the DOBEST model the 
filter poles are a function of only the radial index (m = 
1,2,3,4,5), and not the blade index (n = 1,2,3,4). 
Because the velocities Vm  have been defined (see 
appendix A) as independent of n , only five sets of 
filter coefficients are required for each of the three rotor 
system axes. For the blade elements, 20 separate inputs 
are created from the interpolation scheme (from four 
random variables) per axis. This algorithm is a two-
dimensional extension of earlier work described in 
references  3 and 6. 

Figure 3 identifies the locations at which the rotated 
variables ( μi ) are used, in order to create variables ( i ) 
applicable at the various radial and body-axis stations. 
The rotor system is discussed first, where the variables 
( 1,m , 2,m , 3,m , 4,m ) are created in the rotating frame for 
each of the three aircraft dimensions. 

μ1

μ3

μ2

μ4

μ5

5

1,1

1,2

1,3

1,4

1,5

3,1

3,2

3,3

3,4

3,5 2,5

2,4

2,3

2,2

2,1

4,1

4,2

4,3

4,4

4,5

0

μ6

 

Figure 3. Distributed random variables. 
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From the four blade variables per dimension, the hub 
variable 0 = μ0  is created per dimension, which is 
generalized here to be the center-of-mass variable. For 
locations along the x-body axis the additional variables 
μ5  and μ6  are required in order to interpolate the 
covariances. In this simplified model these two 
variables are used to create a correlated random 
variable 5  (per dimension) at the location of the tail 
rotor. 

 

THE ROTOR SYSTEM 

Since the rotation matrix is a cyclic function of time, 
the random variables μi  contain periodic behavior in 
sampling the original noise sources i . In this section 
the individual blade-element random variables of figure 
3 ( n ,m ) are developed; they also contain the periodic 
behavior. This distribution thus yields an accurate 
description of the random noise sources at each rotating 
blade-element location. 

Where the first index identifies a particular blade, for 
any element the random variable at rm  is n,m , 

 

1,m = Amμ1 + Bmμ3

2 ,m = Amμ2 + Bmμ4

3,m = Am μ3 + Bmμ1

4 ,m = Amμ4 + Bmμ2

 

where the coefficients are 

 
Am =

1
2

1+ m + 1 m( )

Bm =
1

2
1 + m 1 m( )

 

In computing the covariance between any point rn1,m1  
and another point rn2,m2 , general relationships exist, 
depending only on the blade indices. For the same 
blade, adjacent blades and opposing blades, these 
covariances are, respectively, 

E n1,m1 n2 ,m2{ } =

Am1Am2 + Bm1Bm2 n1 n2 = 0
1
2 Am1 + Bm1( ) Am2 + Bm2( ) n1 n2 = 1 ,3

Am1Bm2 + Am2 Bm1 n1 n2 = 2

 

 
 

  

 

For any segment on any blade the variance is 

 E n,m
2{ } = Am

2
+ Bm

2
=1 

When blades are adjacent, as in the following example, 
the covariance between equal-radii elements is given by 

 14 ,m = E r1,mr4,m{ } = 12 Am + Bm( )2 =
1
2
1 + m( )  

The same equation computes 12,m , 23,m  and 34,m , 
where blade indices such as “12” are interchangeable. 
When the blades oppose each other, the covariances are 

 
13,m = E r1,mr3,m{ } = 2Am Bm = m

24,m = E r2,mr4,m{ } = 2AmBm = m

 

These covariances vanish if a radial station rm  could be 
as large as L/2, where m  vanishes, and they approach 
unity as the radial stations approach the rotor hub, 
where m  approaches unity (dm  vanishes). 

The covariances are illustrated in figure 4. Also 
included is the covariance between the hub and radii 
from the hub. For low-altitude flight, a blade’s 
elemental stations are given as solid circles and the tail 
is given as an open circle. As altitude increases, the 
value for L increases such that dm  decreases. These 
points thus migrate toward the ordinate with increasing 
altitude, and the elements receive more correlated 
inputs. 
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Figure 4. Covariances. 

At the outboard blade-element station for the Black 
Hawk’s rotor model, the largest possible value is 
d
5
= 0.641 , at sea level. At an altitude of 1,000 ft the 

value decreases to d5 = 0.048. As indicated in figure 4, 
the rotor inputs become more correlated for high 
altitudes, because the points migrate to the left (L gets 
larger so dm  gets smaller). However, as shown in figure 
4, correlation is important for low-altitude flight. 
Element disturbances become less correlated, and this 
causes an increase in the vehicle’s rotational activity, as 
will be shown. 

If a linear formulation for the covariance was used, 
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 m =1 dm  

the covariances would become as shown in figure 5. 
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Figure 5. Alternative covariances. 

The linear formulation produces more correlation 
between the blade elements, and this produces less 
rotational activity at all altitudes. The linear form is that 
discussed in reference 1, although those authors 
probably never envisioned helicopter applications. It is 
useful to keep in mind the “tweaking” that is usually 
required. From reference 1: “The turbulence model … 
has been developed by rather arbitrarily choosing 
reasonable values of the scales and then determining 
values for the intensity so that the mathematical 
spectral form … fits the measured spectral data …”. 

 

THE CENTER OF MASS 

Where the hub position is given as r0 = 0 , the 
coefficients become 

 A0 = B0 =
1

2
 

and the three previously shown covariance relationships 
collapse to a single relationship. The covariance 
between the hub and any segment of any blade is 

 0,m = E 0 m ,n{ } = 1

2
Am + Bm( ) =

1 + m

2
 

The random variable and variance at the hub are 

 
0 = μ0 =

1

2
μ5 + μ6( )

E 0
2{ } =1

 

Assuming this point to be coincident with the vehicle 
center of mass, 0  becomes the center-of-mass random 
variable, properly correlated with the blade’s random 

variables. However, neither the hub nor the tail rotates 
with the blades, so their turbulence filters must use an 
alternative velocity specification (the true airspeed 
VRW ) to that used by the rotor system’s individual 
elements. 

 

THE TAIL 

In order to create turbulence at the tail, interpolation is 
used between μ5  and μ6 . These independent variables 
are also located at a distance L/2 from the hub, but are 
not rotating with the blades. As above, a correlation 
distance and coefficient are defined: 

 dT =
2rG
L

 

 T = 1 dT( )e dT  

As in the formulation for the individual blade elements, 
the coefficients become, 

 
AT =

1
2

1+ T + 1 T( )

BT =
1

2
1+ T 1 T( )

 

The tail’s random variable and covariance between the 
hub and tail are given by 

 
5 = AT μ5 + BT μ6

0T = E 0 5{ } = 1+ T

2

 

For the Black Hawk model at sea level dT  = 0.8461, 

T  = 0.066 and 0T  = 0.73. At the outboard segment 
for adjacent blades the correlation drops to 0.595, and 
for opposing blades it drops to 0.189. 

All of the cross-correlations are shown in figure 6. 
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Figure 6. Cross correlations. 

All of the indicated points migrate toward the ordinates 
of these graphs with increasing altitude. 

Correlations between the individual elements and the 
tail are not shown in figure 6 because they are periodic 
functions of azimuth angle: 

E 5 1,m{ } = 1
2 1 + T( ) 1 + m( ) + 1 T( ) 1 m( ) cos 1

 
 

 
 

E 5 2,m{ } = 1
2 1 + T( ) 1 + m( ) 1 T( ) 1 m( ) sin 1

 
 

 
 

E 5 3,m{ } = 1
2 1 + T( ) 1+ m( ) 1 T( ) 1 m( )cos 1

 
 

 
 

E 5 4,m{ } = 1
2 1+ T( ) 1 + m( ) + 1 T( ) 1 m( ) sin 1

 
 

 
 

 

TURBULENCE FILTERS 

The filter inputs developed in the preceding sections are 
properly correlated. The blade-element inputs even 
contain rotary effects in sampling random noise. In fact, 
the problem of creating rotorcraft turbulence would be 
completely solved by the above operations if a constant 
relationship existed between the distributed noise and 
the resultant turbulence velocities. Alas, Taylor et al. 
determined that transfer functions are required, and 
those functions consist of filters that have coefficients 
that are functions of altitude and airspeed. For a rotor 
system, where element velocities are nonlinear, the 
airspeed functionality presents an unusual modeling 
challenge. 

In the previous sections a field of random variables has 
been created that displays the proper correlation 
between the aerodynamic centers of the rotorcraft. For 
example, as a blade passes the aft azimuth position, its 

outboard element receives inputs that are almost 
identical to those received by the tail rotor. 
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By passing these inputs through linear filters the power 
spectral densities are shaped, while the correlation is 
retained. The shaping function is based on a pass band, 
which is determined by the filter pole. In the next 
section the rotor systems filters are determined to be 
second order. However, first-order systems seem to be 
gaining some popularity in terrain- and ship-correlated 
applications. Computer science techniques are used to 
produce low-pass filters that avoid significant aliasing. 
This is alluded to in the literature: “To ensure stability 
of the real-time turbulence filters, the model software 
includes safeguards that limit the frequencies of the 

filters to a magnitude not greater than one-quarter of 
the simulation sampling frequency.” This is equivalent 
to sampling the random variables every four computer 
cycles, and seems to be an effective technique for 
producing sharply attenuated low-pass responses. 

From references 1, 5 and 7, Table 2 is presented to 
show the parameters to be used in turbulence filters 
according to the Dryden spectral form in military 
specifications (the references are shown in the table). 
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Table 2. Dryden spatial PSD specifications. 

 Ref. 1, 1969 Ref. 5, 1980 Ref. 7, 1990 

Lu  
145h

1
3 h <1750

1750 h 1750

 
 
 

 

75.64 h 10

hfh
1.2 10< h 1000

h 1000< h 1750

1750 h 1750

 

 

 
 

 

 
 

 

75.64 h 10

hfh
1.2 10< h 1000

h 1000< h 1750

1750 h 1750

 

 

 
 

 

 
 

 

Lv  
145h

1
3 h <1750

1750 h 1750

 
 
  

75.64 h 10

hfh
1.2 10< h 1000

h 1000< h 1750

1750 h 1750

 

 

 
 

 

 
 

 

37.82 h 10
1
2 hfh

1.2 10< h 1000
h
2 1000< h 1750

875 h 1750

 

 

 
 

 

 
 

 

Lw  
h h <1750

1750 h 1750
 
 
 

 

10 h 10

h 10< h 1750

1750 h > 1750

 

 
 

 
 

 

5 h 10
h
2 10< h 1750

875 h > 1750

 

 
 

 
 

 

u , v  w
Lu
Lw

w fh
0.4 h < 1000

w h 1000

 
 
 

w fh
0.4 h < 1000

w h 1000

 
 
 

u ( )  

2L u u
2

1 + Lu( )2[ ]
 

2L u u
2

1 + Lu( )2[ ]
 

2L u u
2

1 + Lu( )2[ ]
 

v ( )  

Lv v
2 1 +3 Lv( )

2[ ]
1+ Lv( )2[ ]

2

Lv v
2 1 +3 Lv( )

2[ ]
1+ Lv( )2[ ]

2

2Lv v
2 1 +3 2Lv( )

2[ ]
1+ 2Lv( )2[ ]

2

w ( )
Lw w

2 1+ 3 Lw( )
2[ ]

1+ Lw( ) 2[ ]
2

Lw w
2 1+ 3 Lw( )

2[ ]
1+ Lw( ) 2[ ]

2

2Lw w
2 1+ 3 2Lw( )

2[ ]
1 + 2Lw( ) 2[ ]

2

 

The function of altitude fh  appearing in this table is 
given by 

 fh = 0.177 + 0.000823h  

Upon inspection of Table 2, the 1990 formulation is 
equivalent to the 1980 formulation. The halved scale 
lengths ( Lv , Lw ) in the 1990 model have been 
accommodated by a redefinition of the spectral 
characteristics. This confusing notation shift is ignored 
here, and the 1980 formulation is used. The scale 
lengths Lu  and Lv  in the x-y plane are then identical. 
Furthermore, since the DOBEST model makes no 
distinction in the direction of travel, u  collapses to 

v . The required parameters for the turbulence filters 
then become, 

 L = Lu = Lv =

75.64 h 10

hfh
1.2 10 < h 1000

h 1000 < h 1750

1750 h 1750

 

 

 
 

 

 
 

 

 Lw =

10 h 10

h 10 < h 1750

1750 h > 1750

 

 
 

 
 

 

 = u = v =
w fh

0.4 h 1000

w h > 1000

 
 
 

 

For the rotor system the spatial spectra all become 
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 U ,V ,W[ ]( ) =
Li i

2 1+ 3 Li( )
2[ ]

1+ Li( )
2[ ]
2  

Hence, all of the Laplace filters have the same form. 
They are given by the critically damped systems, 

 um s( ) = vm s( ) =
3Vm L s +Vm 3L( )

s + Vm L( )
2  

 wm s( ) =
w 3Vm Lw s + Vm 3Lw( )

s +Vm Lw( )
2  

Using the Dryden form these filters are developed by 
decomposing ( )  into a function j( )  times its 
conjugate, and the Laplace forms are extracted. This 
process is more complicated for the von Karman 
spectral form. “The Dryden form has been chosen 
because it is simple to mechanize, as opposed to the 
von Karman form that must be approximated to become 
realizable” (ref. 7). The von Karman form is also used 
at Ames Research Center. 

In the next section the minimum value for Lw  is shown 
to be larger than the value of 10 ft given in table 2 
using realistic cycle times, owing to sample data 
phenomena. 

 

BANDWIDTH CONSIDERATIONS 

The bandwidth of a system is defined as that range of 
frequencies over which the system responds 
“satisfactorily.” For real-time, piloted flight simulations 
the bandwidth of the response to turbulence must not be 
too large. Considering NASA’s Vertical Motion 
Simulator (VMS) located at Ames Research Center, 
faithful responses cannot occur beyond a few Hertz. 
Motion drive motors are usually isolated from higher 
frequency inputs by protective filters. Nonetheless, 
residual high frequencies can be unrealistic. Using the 
VMS and a conventional turbulence formulation, one 
pilot’s comment concerning hover performance was “It 
was like a washboard” (ref. 3). Often-desired high-
frequency inputs, such as the N/rev phenomenon (see 
ref. 8) of about 17 Hz, are sometimes relegated to seat 
shakers. The magnitude of this signal may be isolated, 
and filtered (ref. 9) from the rotor contributions to 
vehicle dynamics. 

The basic problem with a high bandwidth, however, has 
to do with the discrete modeling of transfer functions 
that were developed using conventional aircraft 
parameters. For this discussion we need a couple of 

quantities. Defining the “pole” and its discrete 
equivalent, 

 
p =

V

L
= p t

 

the Laplace transfer function representing unity-
dispersion turbulence may be written 

 f s( ) =
A s + p 3( )

s + p( ) 2
 

Its power spectral density is given by 

 f j( )
2
=
A2 2 + p2 3( )

2 + p2( )
2  

By integrating the spectrum, the total power is 
determined, and it must be unity: 

 P = 1 = f j( )
2
d

0
=
A2

3p
 

From this expression the continuum gain is produced, 

 A =
3p

 

For a discrete system, the zero-order data-hold 
formulation is used for both stability and accuracy, 

 F z( ) =
1 e s t

s
 

 
  

 
 f s( )

 
 
 

 
 
 
 

This produces the z-transform 

 F z( ) =
A Bz+C( )

3p z e( )
2  

In this equation the coefficients are 

 
B = 1 e + 3 1( ) e

C = e
2

e 3 1( ) e
 

The discrete power spectral density is given by 

 F e
j t( )

2
=

A2 B2 + C 2 +2BCcos t( )
3 p2 1 +e 2 2e cos t( )

2  

By integrating this spectrum to the Nyquist frequency 
the total power in discrete simulation is computed: 
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 Pz =
1
t

F e
j t( )

0

2

d t( )  

This produces 

Pz =

A2 1 e( )
2

3 1( )
2 2e 2 + 3 1( ) e +1 e 2[ ]

2 
 
 

 
 
 

3p 1 e 2( )
3

 Substituting the continuum gain, the total power 
obtained in simulation is seen to be a function of only 
the equivalent discrete pole , and is in general, not 
unity: 

 Pz =

1 e( )
2

3 1( )
2 2e 2 + 3 1( ) e +1 e 2[ ]

2 
 
 

 
 
 

1 e 2( )
3

 

The degradation in total discrete power is shown in 
figure 7.  
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Figure 7. Degradation in total discrete power. 

Also shown in figure 7 is a second-order curve fit to Pz , 
which is quite accurate in the indicated range. 

Of course, the discrete gain could be normalized, and 
this would produce unity total power in discrete 
simulation. However, this invariably amplifies the 
spectrum over the discrete bandwidth. This is shown in 
figure 8, where the discrete curves extend only to the 
Nyquist frequency of 50 Hz. 
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Figure 8. Spectral comparisons,  = 0.8. 

The value  = 0.8 was used to create figure 8. The total 
power is the integral under these curves, and since the 
continuum curve extends to infinity, its area (of unity) 
is greater than that of the curve tagged “Discrete 
Power,” which is Pz  = 0.8914 in figure 8. The curve 
tagged “Discrete Power w/Normalized Gain” has the 
desired unity total power, but the accompanying 
distortion is not acceptable. 

As is indicated by figure 8, the continuum gain A  
must be retained in order to preserve the frequency 
response over a significant portion of the discrete 
bandwidth. Hence,  must be limited, and as is shown 
below, this implies that, for the rotor system transfer 
functions, L  must have a minimum value that is 
greater than the value of 10 ft given in table 2. This 
conclusion is not the result of atmospheric physics; it is 
simply the result of sampled data theory. If the sample 
period could be significantly reduced below the value 
of 0.01 sec, then limiting Lw  for the rotor’s filters 
would not be required. 

Similar problems have arisen in the discrete simulation 
of rotor systems throughout the years. For example, 
reference 8 describes the undesirable aliasing 
phenomenon associated with cycle times that are too 
large to accommodate the high frequencies that are 
generated in a rotor system. 

Essentially, problems arise in the discrete simulation of 
a transfer function when the discrete spectrum 
magnitude remains significant at frequencies that are an 
appreciable fraction of the Nyquist frequency (usually 
as observed on a log-frequency plot), such that manifest 
aliasing occurs. 

As may be seen in figure 9, a lower limit on the discrete 
pole of about 0.25 will preserve about 98.83% of 
the total power. When this change is made, figure 8 is 
transformed into figure 9, where  = 0.25. 
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Figure 9. Spectral comparisons,  = 0.25. 

The loss of total power by allowing  to be somewhat 
larger than 0.25 does not seem to severely influence 
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time histories, but it does alter the covariances in the 
rotor system. That is, observed cross correlations using 
spectral techniques depart from their theoretical values 
because of the disproportionate loss in power at the 
outboard segment locations. Thus, from a purely 
mathematical point of view, the artifact of placing a 
lower limit on Lw  in the rotor computations of the 
DOBEST model is justified. This produces an upper 
limit on the pole size 

 max = 0.25= pmax t
Vn ,m t

Lmin
 

This limitation permits the realization of an accurate 
discrete solution that accomplishes the original goals of 
the filters: 

1. Normalize the total power delivered so that 
meaningful dispersions may be applied 

2. Produce a critically damped solution from the 
denominator polynomial of the filter 

3. Produce a second-order roll off beyond the pass 
band in conformance with the Dryden atmospheric 
spectral relationships 

4. Produce relatively flat responses for frequencies in 
the pass band 

5. Retain the Gaussian characteristics of the input 
noise through the filters such that all of the 
covariance relationships given here apply to the 
filtered outputs 

These goals are not met if the equivalent discrete pole 
takes liberties with sampled data theory. Hence, the 
discrete pole has an upper limit given by max , 
atmospheric physics notwithstanding. It should be kept 
in mind that the above analysis is for a static system. 
The upper limit on the discrete pole does not eliminate 
the divergence inherent in the baseline model, which is 
caused by  periodically becoming too small 
(vanishing velocity). 

As shown in appendix A for the baseline model, the 
maximum element velocity is available from any 
blade’s outboard element: 

 Vn,5 = T r5 +VRW  

Assuming t  = 0.01 sec, this equation, combined with 
the above inequality for max , produces a minimum 
value for the characteristic length: 

 Lmin 26.2 +VRW 25 

This value only rises to 38.2 ft at a velocity of 300 
ft/sec, so that it is invariably below the limit of 75.64 ft 
imposed in table 2 for L ( Lu or Lv ). Hence, the limit 
only applies to the vertical characteristic length used by 
the rotor system filters, Lw . 

In the DOBEST model the maximum element velocity 
is always less than or equal to the maximum of the 
baseline model. Hence, the lower limit on Lw  produces 
an even more reasonable range for  in the DOBEST 
model. 

 

NOISE SOURCE CONSIDERATIONS 

In the previous section a z-transform relationship was 
developed. Such relationships relate an input “x” to an 
output turbulence velocity “v”. Operations were 
performed to produce the total power Pz , where these 
operations assumed that the input “x” had a unity total 
power integral. Otherwise “v” is biased by the input. 
This must be considered in order to create the correct 
gain for a difference equation driven by a noise source. 
For instance, the relationship may be written as 

 F z( ) =
A Bz+C( )

3p z e( )
2 =

v z( )
x z( )

 

where x z( )  is computed from a noise source z( )  with 
non-unity total power. In particular, a noise source 
called XNORM is used at Ames Research Center. It 
produces values with a Gaussian magnitude distribution 
in the range ±3.45 when the dispersion is unity; this 
range includes 99.95% of the continuous probability 
integral. For the frequency distribution, the power 
spectral density is flat (white) over the discrete 
bandwidth, and is given by 

 ( )
2

=

0 < 0

t 0 t

0 > t

 

 
 

 
 

 

The power is thus a constant over the Nyquist range, 
and in terms of noise values z( )  created by XNORM 
they may be used in the above z-transform only if 

 z( ) = x z( ) ( ) =
t
x z( )  

Hence, with respect to noise inputs with unity variance, 
the z-transform for velocity becomes 

 
v z( )
z( )

=
t
A

3 p

 

 
 

 

 
 
Bz+ C( )

z e( )
2 =

1
p t

Bz+ C( )

z e( )
2  
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The difference equation for real-time simulation, 
including the dispersion, is then given by 

 vi+1 = 2e vi e
2
vi 1 +

1
B i + C i 1( )  

A procedure is given in appendix C for the discrete 
implementation of the DOBEST model in real-time 
simulation. The baseline model is essentially the same 
as this model, multiplied by a factor of 20 because the 
velocity of each element is computed independently. 
Although the workload of the baseline model does not 
necessarily preclude real-time simulation, its divergent 
responses and energy metrics do (see appendix B). 

If first-order filters are used, as in reference 4, they are 
typically represented by 

 f s( ) =
2 p

s + p
 

Considering the spectrum of the noise source, this 
results in the z-transform relationship 

 
v z( )
z( )

=
2
p t

1 e p t

z e p t

 

 
  

 
  

However, if the noise source is sampled only every kth 
cycle, the z-transform becomes 

 
v z( )
z( )

=
2

k p t
1 e p t

z e p t

 

 
  

 
  

 

PERFORMANCE 

Turbulence velocities are developed in the DOBEST 
model as shown in appendix C. For example, 
considering the vertical axis of a blade, an element’s 
turbulence velocity with respect to its input is given by 
a z-transform relationship that is only a function of the 
radial index: 

 
wn,m

n,m

= F z,m( )  

Through the aerodynamic relationships at each element 
station, a force is produced that is proportional to this 
velocity, which produces a torque depending on the 
moment arm. For rolling moments, the moment arms 
are the lateral distance from the hub, such that each 
element produces a torque proportional to 

 Mn ,m wn,mrm sin n  

Using the previous convention for S = sin 1  and 
C = cos 1 , the vehicle’s total roll torque is thus 
proportional to 

M = Mn,m
m=1

5

n=1

4

rm S w1,m w3,m( )+ C w2,m w4,m( )[ ]
m=1

5

 

The roll torque proportionality is a function of Lw  (or 
altitude), an example of which is given in figure 10. 
Low, medium and high altitude cases are presented, 
where w  = 1 ft/sec. The vertical velocities in figures 
10a, 10c, and 10e are shown for just one blade, but all 
five segments are included. Although these segment 
velocity traces are overlaid, the magnitude decrease 
with altitude is clear. 

The resultant roll torque magnitudes are shown in fig-
ures 10b, 10d, and 10f. Torque is shown to decrease in 
magnitude with altitude, and, because the filter inputs 
become more correlated with altitude, torque also 
changes its characteristics. The dominating frequency 
component is one-per-rev, and this is produced by the 
trigonometric functions in the above torque summation 
equation. The airspeed used to create these graphs was 
200 ft/sec. 
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Figure 10. Vertical velocities and roll torque. 

The input Gaussian noise histories were repeated for 
each of the flight conditions shown in figure 10. This 
means that the random variable inputs i  were identical 

for each case. Since L is a function of altitude, the 
interpolation coefficients are also functions of altitude. 
Hence, the correlations between the random variables 
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n ,m  are also functions of altitude. The vertical 

turbulence filters use the characteristic length L
w
, 

which is also a function of altitude. The observed 
response differences are therefore caused entirely by 
altitude variations. 

The spectra from figure 10 (created by using a long 
time-history) are presented in figure 11. The vertical 
velocity spectra for each of the five segments (of one 
blade) are presented in figures 10a, 10c, and 10e. Roll 
torque spectra are presented in figures 11b, 11d, and 
11f. When the altitude is low, as in figures 11a and 11b, 
the spectra are essentially flat out to about the rotor 
rpm. This occurs because the correlation between 
inputs is low. As altitude increases, the correlation 
between inputs gets larger, and the spectral magnitude 
gets smaller. As shown in figures 11d and 11f, the rpm 
then dominates the frequency response. 
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Figure 11. Vertical and roll spectra. 

These isolated responses of rotor turbulence generated 
by DOBEST are relatively insensitive to the airspeed, 
which in these cases was 200 ft/sec. This insensitivity is 
discussed in appendix B. Similar torque histories occur 
for the pitch axis. The yaw axis is relatively insensitive 
to rotor turbulence for a fully articulated rotor system. 

The roll torques shown in figures 10 and 11 are not all-
inclusive. They are only the incremental stochastic 
disturbance components. Within the rotor model, these 
increments are added to the large cyclic velocities of 
the individual blade elements, which become more 
pronounced with increased vehicle velocity. These total 

element velocities are then used in aerodynamic lookup 
tables. Airspeed variations on advancing and retreating 
blades are thus computed using DOBEST in a 
distributed rotor model. 

 

FREQUENCY FOLDING 

As the blades track each other in a rotor system, an 
important phenomenon occurs. The frequency at the 
rpm ( T  = 27 rad/sec) folds to higher harmonics that 
are multiples of the number of blades. This occurs for 
summations of blade contributions, such as in the 
torque proportionality equation. It occurs because for 
periodic behavior such as flapping, the dynamics of a 
given blade are essentially those of another blade, 
shifted in time (or multiples of 90 degrees). This 
phenomenon was examined in reference 8. 

The phenomenon, however, does not occur for the 
stochastic components of turbulence, and is not 
observed in figures 11b, 11d, and 11f, which represent 
vehicle torque contributions owing to stochastic 
turbulence. For stochastic turbulence, the reason why 
frequency folding under blade summation does not 
occur is that the velocities of the elements on a blade 
are not time-shifted replications of another blade. They 
are statistically correlated velocities that occur at the 
same time. This is illustrated in figure 12, where the 
vertical velocity histories of all four blades are given. 
The interval of time that is shown represents two 
complete rotor revolutions, and element velocities are 
displayed for the case of h = 500 ft and VRW  = 200 
ft/sec. The inboard-element velocity appears at the top 
of each graph, and the outboard-element velocity is at 
the 
bottom.
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Figure 12. Blade vertical velocities. 
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It takes 0.0582 sec for a blade to travel 90 degrees. If 
this delay occurred between the velocities of blades that 
are separated by 90 degrees, it would be obvious in 
figure 12. Hence, as was shown in figures 11a, 11c, and 
11e, there are no periodic components in the 
superimposed turbulence velocities of the DOBEST 
model. Thus, these velocities cannot contribute to the 
N/rev phenomenon when they are transformed and 
summed into the vehicle axes. This is verified by 
figures 11b, 11d, and 11f. 

The 1/rev amplification for high-altitude flight, shown 
in figure 11f, is a result of the total roll torque 
summation, which has the one-per-rev frequency 
content when the blade velocities are highly correlated, 
but have (slightly) different magnitudes, as shown in 
figure 12. 

Body-axis contributions (hub, tail) to turbulence have 
not been illustrated here, although the required random 
variables at the pertinent locations have been derived. 
These contributions utilize the vehicle velocity with 
respect to the mean wind in their filter representations. 
This velocity is typically lower-limited to about 10 
ft/sec in discrete simulation. In hover, it is anticipated 
that body-axis contributions will be small compared to 
the rotor contributions, except for yaw disturbances. In 
testing the SORBET model of reference  3, pilots did 
not detect any improvement in yaw performance when 
tail rotor disturbances were added to the simulation (but 
SORBET did not feature the low hub-to-tail correlation 
developed here). Yaw activity is certain to increase 
with low correlation between hub and tail disturbances. 

As shown in appendix B, the performance of the 
baseline model is not acceptable at any velocity 
condition except VRW  = 0, where it collapses to the 
DOBEST model. Fortunately, the workload of the 
DOBEST model is an order of magnitude less than that 
required for the “baseline” model. 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

A stochastic turbulence model, called DOBEST, has 
been developed for rotorcraft simulation. It represents a 
new approach to turbulence simulation and overcomes 
many of the difficulties associated with low 
aerodynamic velocities. In this model, turbulence is 
treated by superimposition, and Gaussian statistical 
properties are preserved through stationary atmospheric 
filters. 

Random inputs from discrete noise sources are 
cyclically distributed to the locations of finite elements 
on the rotating blades. Rotor disturbances are then 
developed independent of periodic, asymmetric 
airspeeds at blade-element locations. This is 
accomplished by use of stationary filter coefficients 
that utilize an average aerodynamic velocity at each 
radial station. The algorithm thus avoids the intractable 
problem of cyclostationary turbulence filters. Body-axis 
disturbances are treated in the conventional fashion, 
except that turbulence is distributed to the aerodynamic 
centers of the model. 

Spectral relationships are developed as functions of 
turbulence scale length in each dimension, and the 
reduction in correlation for low-altitude flight is shown 
to severely influence the vehicle’s rotational responses. 

The DOBEST model produces only stochastic 
turbulence. It may be used to augment discrete gust 
models, where inputs are from tables created by CFD 
analysis, as functions of location with respect to terrain 
or a ship, as in the JSHIP application. Terrain-
correlated gust velocities, as well as pertinent energy 
variables, may be shared with DOBEST. Transfer 
function poles would be controlled by energy 
considerations of the gust model. The superimposition 
of random components of turbulence to gust models 
should add value to piloted simulation for low-speed 
and hovering operations around ships and other 
structures.
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APPENDIX A: FILTER VELOCITIES 

 

For use in turbulence filter coefficients, blade-element 
velocities Vn,m  are developed in this appendix. These 
velocities include contributions from both the vehicle’s 
aerodynamic velocity VRW  and the element’s velocity due 
to blade rotation Trm . The approximation of the 
DOBEST model is then introduced, where the 
cyclostationary components of the element velocities are 
averaged over a rotor revolution, producing Vm . 

Baseline Velocities 
The total aerodynamic velocity of the vehicle VRW  may be 
represented in the rotor system’s hub frame by 

 VRW = Vx
2
+ Vy

2
+ Vz

2  

Because mast angles are typically small, the hub frame is 
nearly coincident with the vehicle frame. The 
aerodynamic velocity VRW  of the vehicle may be defined 
in terms of the angle of attack  and sideslip  with 
respect to the hub frame. The components of the aircraft’s 
aerodynamic velocity are then given by 

 

Vx = VRW cos cos

Vy = VRW sin cos

Vz = VRW sin

 

The hub frame is convenient for defining the total 
aerodynamic velocity of any element on any blade. The 
following parameters are used in this development. 

 

am
2
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+ T

2 rm
2
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2
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2
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2
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2

n = n +

 

Neglecting blade flapping and lagging, each element’s 
velocity is a function of both its azimuth angle n  and its 
radial position rm : 
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This element velocity is that which is used in turbulence 
filter coefficients for the baseline model (not in the 
DOBEST model). For the first blade (n = 1) at an airspeed 
of VRW  = 200 ft/sec, the element velocities V1,m  are as 
shown in figure 13. Other blades have the same profile, 
shifted by multiples of 2  in azimuth angle, or 0.0582 
sec in time, when T  = 27 

rad/sec.
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Figure 13. Velocities of elements, blade 1. 

In figure 13 the inboard-element velocity V1,1  is shown 
using a solid line and the outboard-element velocity is 
shown by a dotted line. The other element velocities are 
also shown. 

For any vehicle velocity, the inequality Vn,m 0  holds for 
all elements of all blades, so they may be used in the 
coefficients of the turbulence filters. For the baseline 
model this produces cyclostationary filters. The maximum 
and minimum values of the velocities used in the 
coefficients are given by 

Vn,m max( ) = VRW
2 + T

2 rm
2 +2 T rmVRW cos

Vn,m min( ) = VRW
2
+ T

2
rm
2 2 TrmVRW cos

 

For the case of  = 0, these extrema reduce to 

Vn,m max( )
=0 = VRW + Trm

Vn,m min( )
= 0
= VRW T rm

 

(These are plotted as boundary limits in figures 16 and 
17). The velocity Vn,m  vanishes periodically whenever 
VRW = Trm . 

As indicated in figure 13, all of the element velocities on 
a particular blade are in phase. The maximum values 
occur when sin n  = 1, and their magnitudes increase with 
segment number, m. The minimum values occur when 
sin n  = -1, and their magnitudes do not necessarily 
increase with segment number. For instance, the lowest 
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minimum value occurs for that element m which has a 
rotational velocity Trm  closest to the vehicle velocity 
VRW . Mathematically, the crossover phenomenon begins 
to occur for an airspeed VRW > r1 + r2( ) T 2 , which is 
291.54 ft/sec. This velocity is beyond the operational 
capabilities of the Black Hawk. 

The different blade velocities at a particular element 
radius rm  are out of phase by multiples of 2 . This is 
shown in figure 14, where just the inboard (first) element 
velocity is displayed, for all four blades, and at the same 
airspeed used in figure 13. 
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Figure 14. Velocities of blades, element 1. 

In figures 13 and 14 the inboard element’s radial velocity 
is very close to the vehicle velocity, and thus nearly 
vanishes periodically. Therefore, this element’s pole 
( p = Vn,m L ) in its turbulence filter also vanishes 
periodically. This phenomenon is particularly destructive, 
and will be shown to produce divergent responses. 
Element turbulence velocities generally become aberrant 
owing to these periodic velocities, as used by the baseline 
model. 

DOBEST Velocities 
In the DOBEST model, the average cyclostationary 
velocity of an element is used, where the average is 
obtained by integrating over the rotor plane azimuth angle 

n . The average element velocity Vm  (single subscript) at 
the radial station rm  is produced in the following 
derivation ( n  becomes a dummy variable of integration): 
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In this equation, 
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If coefficients (
  
j = 1, 2, 3 J ) are predefined, 

 Rj =
1

2 j 1
1

1
2i

 
 

 
 

2
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j

 

the real-time workload consists of only the J 
combinations, 

 Sm =

m
2 j Rj
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1
2
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2
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A value of about J = 10 is suggested for the series 
because it converges rather slowly as m  approaches 
unity. For a few high values of m  the convergence is 
illustrated in figure 15. The value for m  = 1 is also 
shown by the dotted line. 

The series representation is applicable only for m <1. The 
variable m  is unity only if = 0  and VRW = Trm , and if 
this occurs the closed form representation is used. If VRW  
= 0, m  = 0 also, and the average element velocity is at its 
minimum value Vm = T rm . As indicated in figure 15, 
accurate values for the average velocity are produced by 
taking only a few terms in the series (J = 
10).
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Figure 15. Convergence of summation 
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In contrast to figures 13 and 14, the resultant, average 
element velocities are independent of the azimuth angle. 
They are functions of the vehicle airspeed, the element 
radii, and the rotor system’s angle of attack. The average 
velocity values are not the average values of the extrema 
of Vn,m . Element 1 is the inboard element on a blade, and 
its rotational velocity is smaller than that of any other 
element. Hence, its boundaries are the smallest for any 
airspeed. 

The extreme element velocities, as well as the average 
element velocities, are as shown in figure 16 for the case 
of  = 0. This figure takes great liberties with the 
operational velocity capability of the Black Hawk, which 
is less than 300 ft/sec. It is presented from a mathematical 
point of view only, in order to display the limits and 
averages, as VRW  approaches Trm . A compilation of the 
average element velocities is presented in figure 16f. 
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Figure 16. Velocity limits. 

Using the operational velocity range for the Black Hawk, 
only the inboard element actually experiences the reverse-
flow phenomenon. This is shown in figure 17a. The 
average velocities of the elements are different, but they 
vary little with airspeed from their values at VRW  = 0. This 
is seen in figure 17f. Hence, turbulence responses using 
the DOBEST model display very little dependence on 
airspeed. This phenomenon is examined in appendix B. 
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Figure 17. Velocity limits for the Black Hawk. 

The extremes in average velocity are shown in table 3, 
where it is assumed that VRW max( )  = 300 ft/sec. Only the 
inboard element shows a variation greater than 20%. 
Hence, as a function of airspeed, the filter poles 
( p = Vm L ) can only vary by this percentage in the 
DOBEST model. 

Table 3. Average velocity limits. 

Element Vm min( )  Vm max( )  Range 

1 212.25 348.70 64.3% 

2 370.85 442.2 19.2% 

3 482.83 553.21 14.6% 

4 574.54 651.36 13.9% 

5 654.14 738.12 12.8% 

 

A feasible turbulence model for a rotor system could thus 
ignore airspeed variations. This “leap of faith,” however, 
is not utilized in the DOBEST model developed herein. 

At VRW  = 0 the turbulence (un,m ,vn,m ,w n,m ) owing to using 
the baseline velocity Vn,m  is identical to that using the 
average velocity Vm , because all cyclostationary 
contributions vanish (Vn,m = Vm ). Differences in turbulence 
between the baseline and DOBEST models occur only for 
VRW 0 . These differences are discussed in appendix B. 
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APPENDIX B: TURBULENCE RESPONSES 

 

For both the baseline and DOBEST models, filter 
responses to random variable time histories are examined 
in this appendix. The baseline responses are shown to 
deliver outputs that tend to diverge if an element’s 
tangential velocity periodically approaches that of the 
vehicle’s airspeed. Periodic filter coefficients produce 
unequal dispersions for each element, and they are 
functions of both airspeed and altitude. This presents an 
intractable modeling problem, and meaningful metrics for 
turbulence energy cannot be established. 

Using the average element velocities of the DOBEST 
model, however, stationary filters are implemented at 
each element location, and, in response to random 
variables, their outputs deliver the correct dispersions, 
independent of airspeed and altitude. 

The turbulence trends for most elements have similarities 
for both models, except that the DOBEST model does not 
display the divergent element velocities of the baseline 
model, and energy metrics are retained. 

It is also shown that in the DOBEST model, vehicle 
airspeed has little influence on filter outputs. An 
element’s rotational velocity component overwhelms 
airspeed influences to such an extent that airspeed may 
itself be ignored. This further simplification could be used 
to advantage because it vastly simplifies computations. 

The vertical turbulence velocity wn,m  presents the greatest 
challenge in discrete computation, because the filter pole 
range is largest. This occurs because the scale length is 
smallest (h = Lw L ), and the pole in the vertical filter for 
an element is given by p = Vn,m Lw . As previously 
determined, the turbulence scale length Lw  is restricted to 
a minimum of 26.2 ft (at VRW  = 0), despite the fact that 
altitude may be lower. For the baseline model, although 
this produces relatively large poles, they may also 
periodically vanish. This phenomenon cannot occur in the 
DOBEST model. 

The very low altitude of h = 10 ft is selected in the first 
sample for display, and it produces the largest system 
poles. Then the same display is given for the case of h = 
500 ft, such that the system poles are reduced by an order 
of magnitude. Turbulent velocities versus time are 
displayed for 5 sec in these examples. The input 
dispersion used is w= 1 ft/sec. Both the baseline model 
and the DOBEST model are shown at four different 
airspeeds. All five of the vertical element velocities are 
given on each graph in figure 18, for one blade. The 
proximity of an element’s tangential velocity to the 
airspeed produces the aberrant behavior. 
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Figure 18. Element velocities, h = 10 ft. 

From table 1, these tangential components were given as 
212 and 371 ft/sec for elements 1 and 2, respectively. 
When VRW  is 200 ft/sec, as in figure 18e, the response of 
element 1 is aberrant. When it is 300 ft/sec, as in figure 
18f, element 2 becomes aberrant. These aberrations are 
not dramatic for this case of h = 10 ft as is the case where 
h = 500 ft, because the poles are generally large, and 
rarely  in their periodic, near-vanishing region. 

Statistically, significant differences nonetheless occur 
between the baseline and DOBEST models. The 
DOBEST model delivers the input unity dispersion, but 
the baseline model delivers dispersions that are a function 
of vehicle velocity, as well as element radius. The 
baseline model delivers the dispersions shown in figure 
19. Dispersions were computed as a function of airspeed 
every 20 ft/sec, to a maximum of 1,000 ft/sec. Although 
this final airspeed is well over three times the operational 
capacity of the Black Hawk, these curves are presented 
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only to illustrate the uniform degradation in turbulence 
metrics as the vehicle airspeed approaches that of any 
given 
element.
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Figure 19. Baseline, h = 10 ft. 

The maxima of these curves occur at VRW = Trm . The 
maxima decrease with element number because the radial 
velocity increases with element number, that is, the higher 
the radial velocity, the less time the element’s velocity 
spends around its lowest value. 
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Figure 20. Element velocities, h = 500 ft. 

The cases in which h = 500 ft are much more illustrative. 
The poles are an order of magnitude smaller than those 
used in the previous graphs, so the aberrations are much 
more pronounced. In figure 20e only the inboard element 
(No. 1) actually diverges in the displayed time interval. 
This occurs because Tr1  approaches VRW  = 200 ft/sec. In 
figure 20g both elements 1 and 2 begin to diverge. 

For the high-altitude cases of figure 20, the DOBEST 
model again delivers the input unity dispersion, but the 
baseline model fails to establish a meaningful energy 
metric. These data are shown in figure 21, where the 
dispersions should all be unity for all airspeeds. Once 
more, the graph takes great liberties with the operational 
capabilities of the Black Hawk. The errors are quite large 
in the operational velocity region below 300 ft/sec. These 
errors are further increased for higher altitude flight, 
because the filter’s poles become correspondingly 
smaller. 
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Figure 21. Baseline, h = 500 ft. 

In comparing the baseline and DOBEST models, it is also 
of interest to look at all four blades at a specific flight 
condition. The parameters VRW  = 200 ft/sec and h = 500 ft 
were used to create the next two sets of graphs. In figure 
22 it is seen that the trend of element velocities in the 
baseline model is random, and they quickly diverge. 
These velocities are nonsensical. They cannot be 
superimposed on the other components of blade-element 
velocities in a rotor model because they would rapidly 
crash the vehicle. 

Because of the airspeed, the most divergent trace in figure 
22 is for the inboard element. For the DOBEST model, 
the same parameters are used; the responses are given in 
figure 23. Note that the velocities are quite similar for all 
segments, and for all blades. 
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Figure 22. Baseline blade responses. 

Identical random noise inputs were used to create all of 
the graphs in this appendix. Hence, figure 20e and figure 
22d display the same data, using different scales. The 
same is true for figure 20f and figure 
23d.
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Figure 23. DOBEST blade responses. 

The DOBEST model’s outputs are relatively insensitive 
to vehicle velocity. This is seen in a comparison of figures 
20b-20f and 20h. The filter pole, however, is inversely 
proportional to the characteristic length of turbulence, 
such that filter outputs are sensitive to altitude variations. 
From the DOBEST model, this is shown in figure 24, for 
three different altitudes and two different velocities. 
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Figure 24. DOBEST comparisons. 

A comparison of the set of graphs in figure 24, by looking 
in the vertical dimension, shows that variations in altitude 
indeed alter the turbulence histories. The poles vary 
considerably with altitude because of the inverse 
relationship. 

However, a comparison of these graphs by looking in the 
horizontal dimension shows small differences. The 
distributed random inputs dominate the responses. 
Defining the filter poles as functions of element rotational 
velocity appears to produce a feasible model. Since the 
computation of the average velocity per element (see 
appendix A) has little influence on the results, the use of 
VRW  = 0 in the rotor computations is probably sufficient 
for most applications. Nonetheless, the airspeed 
contribution is retained in the DOBEST model. 
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APPENDIX C: REAL-TIME COMPUTATION

 

The real-time workload is presented in this appendix 
for the DOBEST model. The workload for the baseline 
model is similar, but much more complicated because 
each and every element has its own unique filter 
coefficients at each instant of time. The workload is 
divided into two parts, where the first part consists of 
computations for slowly varying quantities. The 
computational workload of these equations may be 
segmented such that it is divided over a number of 
cycles. This is not true for the baseline model. The 
second part consists of computations that must be 
performed on each computer cycle. 

Slowly Varying Functions 
Slowly varying quantities are computed as a function of 
altitude and vehicle velocity: 

 fh = 0.177+ 0 .000823h  

 

L =

75.64 h 10

hfh
1.2 10 < h 1000

h 1000< h 1750

1750 h 1750

 

 

 

 
 

 

  L w =

10 h 10

h 10< h 1750

1750 h >1750

 

 

 

 
 

 

 Lw =
26.2 h 26. 2

 L w h > 26. 2
 
 
 

 

 =
w fh

0.4 h <1000

w h 1000

 
 
 

 

After the above computations, the vertical scale lengths 
are further restricted by functions of airspeed: 

  L w =
 L w  L w VRW 25

VRW 25 otherwise
 
 
 

 

 Lw =
Lw Lw 26.2 + VRW 25

26.2 + VRW 25 otherwise
 
 
 

 

Parameters pertinent to body-axis turbulence are: 

  V RW =
10 VRW 10

VRW VRW >10
 
 
 

 

 =
 V RW t

 L w
 

 G =
2
1 e( )  

    =
 V RW t
L

 

 

  D =
1

   
1 e    + 3 1( )    e    [ ]

  E =
1

   
e    1 3 1( )    [ ]e    

 

 

   D = w
1
1 e + 3 1( ) e[ ]

   E = w
1

e 1 3 1( )[ ]e
 

These coefficients for body-axis turbulence are 
identical to those used by models for conventional 
aircraft. 

Parameters required for tail turbulence are: 

 dT =
2rG
L

 

 T = 1 dT( )e dT  

 
AT =

1
2

1+ T + 1 T( )

BT =
1

2
1+ T 1 T( )

 

For rotor turbulence, where m = 1,2,3,4,5, parameters 
pertinent to the blade elements are 

 dm =
2rm
L

 

 m = 1 dm( )e dm  

 
Am =

1
2

1+ m + 1 m( )

Bm =
1

2
1 + m 1 m( )

 

Five matrices of coefficients are produced from the 
above computations: 
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 M[ ]m =

0 0 0 0 A0 B0
Am 0 Bm 0 0 0

0 Am 0 Bm 0 0

Bm 0 Am 0 0 0

0 Bm 0 Am 0 0

0 0 0 0 AT BT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since five blade-element radii are considered, five sets 
of coefficients are required for their turbulence filters 
(see appendix A, especially for the additional 
considerations required in the baseline model): 

 Vm = 1 Sm( ) VRW
2
+ T

2
rm
2
+2 T rm cos  

 
m =

Vm t
L

  m =
Vm t

Lw

 

 

Dm =
1

m

1 e m + 3 1( ) me
m[ ]

Em =
1

m

e m 1 3 1( ) m[ ]e m

 

 

 D m = w
1

  m
1 e   m + 3 1( )   me   m[ ]

 E m = w
1

  m
e   m 1 3 1( )   m[ ]e   m

 

Fast Functions 
As a function of time ti = i t , the trigonometric 
relationships of an arbitrary blade are available from 
computations in the rotor model: 

 
S

C
 

  
 

  i
=
sin Tti( )
cos Tti( )

 

  

 

  
 

For each cycle time the rotation matrix is 

 T[ ]=
1

8

1+ 2C 1 + 2 S 1 2C 1 2 S

1 2 S 1+ 2C 1 + 2 S 1 2C

1 2C 1 2 S 1+ 2C 1 + 2 S

1 + 2 S 1 2C 1 2 S 1+ 2C

1 + 2 1 1 2 1

1 2 1 1 + 2 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Twelve random variables are acquired in three sets, 

1 , 2 , 3 , 4( )k , where the axis identifier is k =1,2,3 . Six 
random variables per axis are computed: 
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From the matrices of coefficients, 22 inputs are created 
per axis: 
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= M[ ]m
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At the center of mass (variable 0) the filter solutions for 
the three vehicle axes are given by the difference 
equations, 

 

u0,i = e u0,i 1 +G 0,1,i

v0 ,i = 2e    
v0,i 1 e

2    
v0,i 2 +   D 0,2,i +   E 0 ,2,i 1

w 0,i = 2e w0,i 1 e
2

w 0,i 2 +    D 0,3,i +    E 0,3,i 1

 

These translational turbulence equations are the same as 
those used in conventional aircraft applications for the 
center of mass. 

For the distributed system the tail contribution (variable 
5) is also included: 

 

u5,i = e u5,i 1 + G 5,1,i

v5,i = 2e    
v 5,i 1 e

2    
v5,i 2 +   D 5,2,i +   E 5,2,i 1

w 5,i = 2e w5,i 1 e 2 w5,i 2 +    D 5,3,i +    E 5,3,i 1

 

Note that the longitudinal body filters use the first-order 
filters derived from table 2. All body-axis filters thus 
conform to models for conventional aircraft. 

For each blade element, of which there are 20, the three 
components of turbulence velocity are given by the 
difference equations, 

un,m ,i = 2e m un,m,i 1 e 2
m un,m,i 2 + Dm n,m ,1,i + Em n,m,1,i 1

vn,m,i = 2e mvn,m,i 1 e 2
m vn,m ,i 2 + Dm n,m,2,i + Em n,m,2,i 1

wn,m,i = 2e   
m wn,m,i 1 e 2   

m wn,m ,i 2 +  D m n,m,3,i +  E m n,m,3,i 1

 

Considering all three vehicle axes, 60 velocity 
components are computed at the pertinent blade-
element locations, and are summed with the other 
velocity components of the rotor model. 


